# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

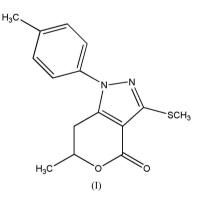
# Jing-Jun Hao, You-Ming Wang,\* Zheng-Ming Li and Hai-Bing Song

State Key Laboratory Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: haojjchem@yahoo.com.cn

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.110 Data-to-parameter ratio = 16.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 6,7-Dihydro-6-methyl-3-(methylsulfanyl)-1-(p-tolyl)pyrano[4,3-c]pyrazol-4(1*H*)-one

The title compound,  $C_{15}H_{16}N_2O_2S$ , which is a potentially new bioactive molecule containing pyrazole and pyrone ring systems, was synthesized by the reaction of 1-*p*-tolylhydra-zine and 3-[bis(methylthio)methylene]dihydro-6-methyl-3*H*-pyran-2,4-dione in ethanol.

# Comment

In recent years, there have a number of reports on the biological activity of pyranone derivatives, including inhibition of HIV proteinase (Ellsworch & Lunney, 1995; Thaisrivongs & Yang, 1994), tobacco virucidal activity, plant growth regulation activity, and fungicidal and herbicidal activity (Li *et al.*, 2004). Activity against *Biomphalaria glabrata* egg masses has also been reported (de Souza *et al.*, 2004). Pyrazole compounds also exhibit biological activity, including insecticidal, fungicidal, herbicidal (Li *et al.*, 1997; Wang *et al.*, 2000) and phytohormone activity (Liu *et al.*, 1999). In view of these facts, and as a continuation of our interest in the chemistry of heterocycles, we attempted to synthesize a series of pyranopyrazole derivatives, including the title compound, (I), by the reaction of 1-*p*-tolylhydrazine and 3-[bis(methylthio)methylene]dihydro-6-methyl-3*H*-pyran-2,4-dione in ethanol.



The molecular structure of (I) is shown in Fig. 1. The present crystal structure determination reveals that the *p*-tolyl is substituted on N1 rather than N2. The *p*-tolyl ring is twisted about the N1–C9 bond with respect to the pyrazole ring, with a value of 46.7 (3)° for the C4–N1–C9–C10 torsion angle. The S–CH<sub>3</sub> bond is also rotated out of the plane of the pyrazole ring, with the torsion angle C8–S1–C7–N2 = -9.5 (2)°.

## Experimental

The title compound was synthesized by addition of anhydrous potassium carbonate (0.138 g, 1 mmol) and 1-*p*-tolylhydrazine dihy-

 $\odot$  2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 12 April 2005 Accepted 18 April 2005

Online 23 April 2005

drochloride (0.195 g, 1 mmol) to an absolute ethanol solution (30 ml) containing 3-[bis(methylthio)methylene]dihydro-6-methyl-3*H*-py-ran-2,4-dione (0.232 g, 1 mmol). The mixture was stirred for 3 h at room temperature. The product was obtained by silica-gel column chromatography, using a 1:5 mixture of ethyl acetate and petroleum ether as eluant. Colourless single crystals of (I) suitable for X-ray diffraction analysis were obtained by diffusion of *n*-hexane into a solution of the crude product in dichloromethane. Spectroscopic analysis: <sup>1</sup>H NMR (CDCl<sub>3</sub>,  $\delta$ , p.p.m.): 7.27–7.38 (*m*, 4H), 4.60–4.67 (*m*, 1H), 2.96 (*d*, 2H, *J* = 6.9 Hz), 2.62 (*s*, 3H), 2.42 (*s*, 3H), 1.53 (*d*, 3H, *J* = 6.3 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>,  $\delta$ , p.p.m.): 161.95, 150.74, 145.74, 138.26, 135.64, 130.00, 122.63, 107.89, 74.96, 30.00, 21.05, 20.65, 13.46. Analysis calculated for C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>S: C 62.48, H 5.59, N 9.71%; found: C 62.27, H 5.57, N 10.00%.

 $D_{\rm r} = 1.290 {\rm Mg m}^{-3}$ 

Cell parameters from 2931

Mo  $K\alpha$  radiation

reflections

 $\mu = 0.22~\mathrm{mm}^{-1}$ 

T = 293 (2) K

Prism, colourless

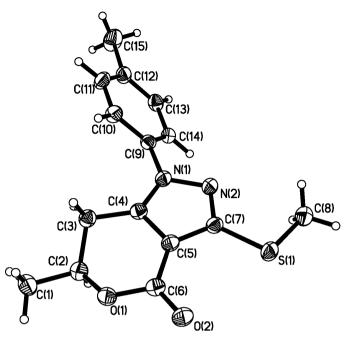
 $0.26 \times 0.24 \times 0.14~\text{mm}$ 

 $\theta = 2.2 - 26.1^{\circ}$ 

### Crystal data

 $C_{15}H_{16}N_2O_2S$   $M_r = 288.36$ Monoclinic,  $P_{21}/c$  a = 10.662 (2) Å b = 18.315 (4) Å c = 7.6831 (15) Å  $\beta = 98.377 (3)^{\circ}$   $V = 1484.3 (5) Å^{3}$  Z = 4

#### Data collection


Bruker SMART CCD area-detector<br/>diffractometer3015 independent reflections<br/>2130 reflections with  $I > 2\sigma(I)$ <br/> $\varphi$  and  $\omega$  scans $\varphi$  and  $\omega$  scans $R_{int} = 0.029$ <br/> $\Theta_{max} = 26.3^{\circ}$ <br/> $M = -11 \rightarrow 13$ <br/> $T_{min} = 0.736, T_{max} = 0.970$  $K = -20 \rightarrow 22$ <br/>8492 measured reflections $I = -9 \rightarrow 9$ 

### Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.065P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.038 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.065P)^2 \\ + 0.0755P] & where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 0.98 & (\Delta/\sigma)_{\rm max} = 0.005 \\ 3015 \ {\rm reflections} & \Delta\rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3} \\ 184 \ {\rm parameters} & \Delta\rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm H-atom\ parameters\ constrained} \end{array}$ 

All H atoms were placed in calculated positions, with C-H = 0.93, 0.96, 0.97 or 0.98 Å, and included in the refinement using a riding

model, with  $U_{iso}(H) = 1.2U_{eq}(C)$  [1.5 $U_{eq}(C)$  for methyl H atoms]. Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.



#### Figure 1

A view of compound (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

This project was supported by the National Natural Science Foundation of China (grant No. 20302003).

## References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ellsworch, E. L. & Lunney, E. (1995). WO Patent 14 011.
- Li, Y.-X., Wang, Y.-M., Wang, S.-H., Yang, X.-P. & Li, Z.-M. (2004). Gaodeng Xuexiao Huaxue Xuebao, 25, 281–283.
- Li, Z.-M., Chen, H.-S., Zhao, W.-G., Zhang, K. & Huang, X.-S. (1997). Gaodeng Xuexiao Huaxue Xuebao, 18, 1794–1799.
- Liu, T.-L., Xie, J.-H.& Yu, S.-L. (1999). Acta Sci. Nat. Univ. Nankaiensis, 32, 101–104.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Souza, L. C. de, Feitosa dos Santos, A., Sant'Ana, A. E. G. & Imbroisi, D. de O. (2004). *Bioorg. Med. Chem.* 12, 865–869.
- Thaisrivongs, S. & Yang, C. P. (1994). WO Patent 11 361.
- Wang, Y.-M., Li, Z.-M., Li, J. F., Li, S.-Z. & Zhang, S.-H. (2000). Chem. J. Chin. Univ. 20, 1559–1563.